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Quantum simulation of the Riemann-Hurwitz ζ function
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We propose a simple realization of a quantum simulator of the Riemann-Hurwitz (RH) ζ function based on a
truncation of its Dirichlet representation. We synthesize a nearest-neighbor-interaction Hamiltonian, satisfying
the property that the temporal evolution of the autocorrelation function of an initial bare state of the Hamiltonian
reproduces the RH function along the line σ + iωt of the complex plane, with σ > 1. The tight-binding
Hamiltonian with engineered hopping rates and site energies can be implemented in a variety of physical
systems, including trapped-ion systems and optical waveguide arrays. The proposed method is scalable, which
means that the simulation can be, in principle, arbitrarily accurate. Practical limitations of the suggested scheme,
arising from a finite number of lattice sites N and from decoherence, are briefly discussed.
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I. INTRODUCTION

The Riemann ζ function has attracted the interest of
mathematicians and physicists for quite a long time. This
function plays a key role in number theory, in particular in
the distribution of prime numbers [1,2], and it is the basis
of one of the most fundamental mathematical conjectures,
the Riemann hypothesis. In physics, Riemann’s ζ function
is found to be related to a wide variety of different physical
areas and phenomena, ranging from classical mechanics to
statistical and quantum physics. For an extensive review of
the topic, see [3]. Several works have highlighted the close
connections among the Riemann hypothesis, random matrix
theory, and the physics of classical and quantum chaos (see, for
instance, [4–8] and references therein). In statistical physics,
the Riemann ζ function can be seen as the partition function
of a quantum gas, called the Bose Riemann gas, with the
prime numbers labeling the eigenstates [9–11]. In quantum
mechanics, several attempts have been made to introduce
a quantum system whose spectrum is associated with the
Riemann ζ function. In particular, following the original
Hilbert-Pólya conjecture great efforts have been devoted to
propose quantum Hamiltonians whose bound states coincide
with the zeros of the ζ function [3,5,12–14]. Riemann ζ zeros
also enter into phenomena like Bose-Einstein condensation
or the cosmic microwave background. For example, a Bose-
Einstein condensate could be used, at least in principle, to
factorize numbers and to calculate the prime factors [15].

In a recent work [16], Mack and collaborators showed
that a generalization of the Riemann function, introduced
by Hurwitz [17], can be retrieved from the autocorrelation
function of a quantum state propagating in an anharmonic
oscillator potential. The connection to this Riemann-Hurwitz
(RH) ζ function is made through its Dirichlet representation
and requires that the quantum system be initially prepared
into a thermal phase state, the so-called Riemann state [16].
Unfortunately, such a thermal phase state is not the mixed
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thermal state of the anharmonic oscillator, and system prepa-
ration might be a nontrivial issue involving a coherent-state
superposition.

In this work, we propose a simple method to simulate the
RH function by using an N -dimensional quantum system,
in which system preparation in a thermal phase state is
readily provided by excitation of a bare state of the system.
Interestingly, our finite-dimensional system is described by
a nearest-neighbor-interaction Hamiltonian, which can be
implemented in a variety of quantum or classical systems, such
as trapped ions or optical waveguide arrays with engineered
hopping rates.

This paper is organized as follows. In Sec. II, we briefly
review the connection between the correlation function of
a specially prepared quantum system and the Dirichlet rep-
resentation of the RH function, introduced in Ref. [16]. In
Sec. III we introduce a rather general technique to synthesize
a finite-dimensional tridiagonal Hamiltonian satisfying the
property that the temporal evolution of the autocorrelation
function of an initial bare state of the system reproduces the
RH function along the complex axis σ + iωt , with σ > 1. In
Sec. IV we briefly present possible physical implementations
of the nearest-neighbor Riemannian Hamiltonian, based on
trapped ions or optical waveguide array systems. Finally, in
the concluding section, Sec. V, we discuss the main limitations
of our quantum simulator scheme and briefly suggest possible
extensions of our results.

II. BASIC IDEA

We consider an N -dimensional Hilbert space, in which
|0〉,|1〉, . . . ,|N − 1〉 is an orthonormal basis and the Hamilto-
nian describing our system in such a basis is the N × N matrix
H. Following the idea in [16], we assume that the Hamiltonian
H has a logarithmic energy spectrum,

En = h̄ω ln(n + a), (1)

where 0 < a � 1 and n = 0,1, . . . ,N − 1. Initially, we pre-
pare our system in the state |ψ(0)〉 = |0〉, which is assumed
to be easy to prepare experimentally. Then this state evolves
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according to

|ψ(t)〉 =
N−1∑
n=0

Cne
−iEnt/h̄|αn〉, (2)

where |αn〉 is the nth eigenstate of H with an eigenvalue En,

H|αn〉 = En|αn〉, (3)

and Cn = 〈αn|0〉. Let us now suppose that the amplitudes Cn

can be set to

Cn = N (n + a)−σ/2, (4)

whereN is a normalization factor. If the above assumptions are
fulfilled, after some simple algebra, the correlation function,
i.e., the probability amplitude of state |0〉 at time t , is given by

〈0|ψ(t)〉 = 1

N 2

N−1∑
n=0

1

(n + a)σ+iωt
. (5)

At this point, we can compare this expression with the Dirichlet
representation of the RH ζ function, given by

ζ (s,a) =
∞∑

n=0

1

(n + a)s
, (6)

where we have set s = σ + iωt . The Dirichlet series on the
right-hand side of Eq. (6) converges for Re s ≡ σ > 1, as
shown in Fig. 1. An accurate estimate of the RH ζ (s,a) function
can be obtained by truncating the series up to a certain order N .
This is precisely what our quantum simulator does; see Eq. (5).
A detailed discussion of the error arising from truncation will
be discussed in Sec. V. Note that the ordinary Riemann ζ

function is obtained for a = 1. This simple connection allows
for the simulation of the RH function, as long as the following
requirements are met: (i) the Hamiltonian has a logarithmic
spectrum (1), (ii) the initial amplitudes of the eigenstates of H
obey Eq. (4), and (iii) there exists a simple experimental setup
providing such a Hamiltonian. In Fig. 1 we show the allowed
part of the complex plane, where our approach is applicable.
Unfortunately, the most interesting part, σ = 1/2, cannot be
accessed. We will return to this point in Sec. V. In the next
section we propose a practical approach, which allows us to
meet the above requirements for the Hamiltonian.

FIG. 1. (Color online) Domain of convergence of the series (6)
(light shaded area) in the complex s = σ + iωt plane. The dark
shaded area schematically shows the accessible domain of our
quantum simulator of the Riemann ζ function. The boundaries of
this domain arise from the truncation of the Dirichlet series (6)
(σ > σmin) and from the finite coherence time of the system (t < tcoh).
An estimate of σmin is given in Sec. V.

III. CONSTRUCTION OF THE HAMILTONIAN

In this section we propose a rather general technique
to synthesize a tridiagonal Hamiltonian matrix H with the
required spectrum (1), which should also meet condition (4).
To this aim, we start with the diagonal matrix defined by
the logarithmic eigenvalues (1), and we make a sequence
of similarity transformations (basis changes), which do not
change the eigenvalues but modify the eigenvectors of the
Hamiltonian matrix. Let us indicate by D the N -dimensional
diagonal matrix,

D = diag [E0,E1, . . . ,EN−1] , (7)

where the energies En are assumed to follow the logarithmic
dependence (1). Next, let us make a basis transformation, by
using an orthogonal matrix T,

H′ = T−1DT, (8)

where we choose the elements of the first column of T equal
to the amplitudes Cn in Eq. (4). The other columns are con-
structed as orthonormal vectors of the orthogonal complement.
This task has infinitely many solutions, which, however, are
identical regarding our purposes. Finally, we want to transform
the matrix H′ into a tridiagonal form. This can be achieved,
for instance, by using a tridiagonalization procedure, based on
Householder reflections [18]. The described algorithm leads to
a tridiagonal Hamiltonian H, which has the desired logarithmic
spectrum and also fulfills condition (4). For the sake of clarity,
we present an example of the described procedure for N = 5.
We choose the parameters in the simulation to be a = 1/2 and
σ = 2. In this case, matrix D, according to Eq. (1), is

D = h̄ω diag [ln(1/2), ln(3/2), ln(5/2), ln(7/2), ln(9/2)] .

(9)
The transformation matrix T has the approximate numerical
value,

T =

⎡
⎢⎢⎢⎢⎢⎣

0.919 0.394 0 0 0

0.306 −0.714 0.629 0 0

0.184 −0.429 −0.576 0.671 0

0.131 −0.306 −0.412 −0.585 0.614

0.102 −0.238 −0.320 −0.455 −0.789

⎤
⎥⎥⎥⎥⎥⎦

,

(10)

where the elements of the first column are given by Eq. (4),
and the following columns are constructed such that all vector
columns are orthonormal, which leads to an orthogonal matrix,
T−1 = TT . Using this transformation matrix, we obtain for the
Hamiltonian in the new basis

H′ = T−1DT

= h̄ω

⎡
⎢⎢⎢⎢⎢⎣

−0.479 −0.499 −0.136 −0.053 −0.020

−0.499 0.470 0.317 0.124 0.047

−0.136 0.317 0.831 0.167 0.064

−0.053 0.124 0.167 1.153 0.090

−0.020 0.047 0.064 0.090 1.409

⎤
⎥⎥⎥⎥⎥⎦

.

(11)

Finally, we proceed to the tridiagonalization of H′. This
is achieved by using a sequence of N − 2 Householder
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transformations,

H = M(v3)M(v2)M(v1)H′M(v1)M(v2)M(v3), (12)

where

M(v) = I − 2|v〉〈v| (13)

and

|v1〉 = [0,0.990,0.132,0.052,0.020]T , (14a)

|v2〉 = [0,0,0.959,0.256,0.119]T , (14b)

|v3〉 = [0,0,0,0.941,0.337]T . (14c)

The explicit numerical value for the Hamiltonian is

H = h̄ω

⎡
⎢⎢⎢⎢⎢⎣

−0.479 0.520 0 0 0

0.520 0.701 0.445 0 0

0 0.445 0.894 0.311 0

0 0 0.311 1.062 0.198

0 0 0 0.198 1.208

⎤
⎥⎥⎥⎥⎥⎦

, (15)

where we have neglected the minus signs of the negative off-
diagonal elements since they can be removed by only a simple
phase transformation in the amplitudes. Obtained in this way,
Hamiltonian H has the desired logarithmic spectrum, and if
we diagonalize it,

D = V−1HV, (16a)

V =

⎡
⎢⎢⎢⎢⎢⎣

0.919 0.306 0.184 0.131 0.102

−0.378 0.521 0.493 0.437 0.389

0.110 −0.704 0.024 0.389 0.583

−0.020 0.361 −0.703 −0.177 0.586

0.002 −0.089 0.478 −0.781 0.392

⎤
⎥⎥⎥⎥⎥⎦

,

(16b)

we notice that the first row of V is equal to the first column
of T and is equal to the numbers in Eq. (4). The fact that TT and
V have the same first row follows from the property that the
Householder transformations in Eq. (12), with vectors (14), do
not change the first row of the matrix, which diagonalizes the
Hamiltonian. Hence the matrices TT and V, which diagonalize
respectively H′ and H, have the same first row. The matrix T
is in fact the matrix that connects the two bases |n〉 and |αn〉,
which leads to the possibility to express state |0〉 as a coherent
superposition of the eigenstates of H,

|0〉 =
N−1∑
n=0

Cn|αn〉, (17)

where Cn have the desired values (4). In such a way we have
fulfilled all of the necessary restrictions for the Hamiltonian.
The described procedure can be applied for an arbitrary
dimension N , which means that in principle we can simulate
the RH ζ function with an arbitrary accuracy.

As an example, in Fig. 2 we compare the simulation
of the RH function, obtained by numerical integration of
the Schrödinger equation, with the properly normalized RH
ζ function. We see that even when a small dimension for
the Hamiltonian is used, N = 5, the simulation performs
very well, provided that σ is not too close to the boundary
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FIG. 2. (Color online) Comparison of the normalized RH zeta
function ζ (σ + iωt,a)/ζ (σ,a) (solid line) with the simulation,
obtained by numerical integration of the Schrödinger equation,
assuming N = 5 (dashed line). Top and bottom panels: a = 1
(ordinary Riemann function); middle panels: a = 0.5.

σ = 1 of convergence of the Dirichlet series. The error of the
approximation depends on the values of parameters a and σ .
As σ approaches unity, if N is kept fixed, the error will become
larger, as shown in the bottom panel of Fig. 2. We discuss more
on that issue in Sec. V. In the next section, we propose several
implementations, in particular physical systems.

IV. PHYSICAL IMPLEMENTATION

The tridiagonal Hamiltonian introduced in the previous
section arises in many different areas of physics. In particular,
tight-binding Hamiltonians with engineered hopping rates and
site energies have been extensively investigated in connection
to the problem of perfect quantum transfer in quantum
networks, and physical implementations based on, e.g., spin
chain models have been suggested (see, for instance, [19–22]
and references therein). Hence we do not aim here to point out
all the possible realizations of the proposed scheme. We will
specifically focus on two possible physical implementations,
namely, in trapped ions and in optics.

A first possible realization uses a linear chain of trapped
ions. From an experimental point of view, trapped ions are one
of the most advanced systems for quantum computation [23]
and quantum simulation [24]. For the purpose of this work,
we need to be able to experimentally construct a tridiagonal
symmetric interaction matrix, with control over each element
of the Hamiltonian. This can be achieved, for instance, by
implementing a nearest-neighbor spin-spin interaction,

H = 1

2

N−1∑
n=1

Jn

(
σx

n σ x
n+1 + σy

n σ
y

n+1

) −
N∑

n=1

Bnσ
z
n , (18)
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where σx,y,z are the Pauli matrices, Jn are the spin-spin cou-
pling constants, and Bn are individual couplings to an external
(fictitious) magnetic field. This Hamiltonian commutes with
the excitation number operator, which means that the Hilbert
space factorizes into subspaces with different numbers of
excitations. If we consider the single-excitation subspace, it
is easy to show that, in this basis, the Hamiltonian can be
written as a tridiagonal matrix [25],

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 J1 0 . . . 0 0

J1 B2 J2 . . . 0 0

0 J2 B3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . BN−1 JN−1

0 0 0 . . . JN−1 BN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

where we neglect a common irrelevant term, −∑N
n=1 Bn, in

all the diagonal elements. Traditionally, Hamiltonian (18) is
implemented by using optical spin-dependent forces, induced
by laser beams [24]. In this approach, off-resonant coupling
to the motional sidebands is used in order to produce effective
spin-spin interactions. Recently it has been shown that a
general Jij coupling matrix can be implemented by using
such a setup [26]. As an example, for a spin chain made
of N = 5 sites the normalized values of couplings Jn and
local magnetic fields Bn, which are needed to realize the
logarithmic spectrum (1), are given by Eq. (15). Note that
the corresponding magnetic fields Bn show a slow monotonic
increase, whereas the hopping rates Jn change in the range of
±30% about a mean value.

A second possible physical implementation of the tridiag-
onal Hamiltonian is provided by light transport in a chain of
evanescently coupled optical waveguides with engineered cou-
pling constants and propagation constants (see, for instance,
[27] and references therein). In an array of coupled optical
waveguides, it is well known that transport of discretized light
is governed by a set of coupled-mode equations described by a
tridiagonal Hamiltonian H of the same form as Eq. (19), where
N is the total number of waveguides, Bn are the propagation
constants of guided modes in the various waveguides of the
array, and Jn are the coupling (hopping) constants between
adjacent waveguides [27,28]. In order to independently en-
gineer the coupling Jn and propagation constants Bn, it is
convenient to circularly bend the axis of the waveguide array.
A schematic of the optical waveguide setting that realizes the
Hamiltonian H is shown in Fig. 3. Axis bending basically
introduces a mismatch between the propagation constants of
adjacent waveguides due to different geometric paths. Such a
mismatch can be properly tailored by controlling the radius of
curvature R of waveguides and the waveguide separation in
the plane of axis bending (see, for instance, [28]). On the other
hand, the hopping rates Jn between adjacent waveguides can
be tailored by a proper choice of the waveguide separation.
To appreciate the role of axis bending and to properly design
the waveguide array, we recall that propagation of discretized
light in the bent waveguide array of Fig. 3 is governed by the

FIG. 3. (Color online) Sketch of a possible physical implementa-
tion of the tridiagonal Hamiltonian H for the quantum simulation of
the RH ζ function based on a chain of evanescently coupled optical
waveguides with a circularly curved optical axis.

coupled-mode equations [27,28]:

i
dcn

dt
= −Jn−1cn−1 − Jncn+1 + (E0 + �En) cn (20)

(n = 1,2,3, . . . ,N ), where cn is the amplitude of light waves
trapped in the nth waveguide, Jn is the hopping rate between
waveguides n and n + 1 (with J0 = JN = 0), E0 is the
effective index of the fundamental mode of the individual
waveguide with a straight optical axis, and �En = nsxn/(Rλ)
is the propagation constant detuning of waveguide n induced
by bending of the optical axis t , with xn being the x

coordinate of waveguide n [see Fig. 3]. In Eq. (20), ns is
the refractive index of the substrate, and λ = λ/(2π ), with
λ being the optical wavelength. For waveguide separation
dn, the hopping rate is given to an excellent accuracy by
the exponential law Jn = κ exp(−αdn), with κ and α some
constants depending on waveguide fabrication parameters that
can be experimentally determined. The detuning between
waveguides n and n − 1 is determined by the x-coordinate
difference an = xn − xn−1 = dn cos θn [see Fig. 3] and thus
can be geometrically controlled by selecting the proper value
of θn in the interval [0,π ]. To obtain the correlation function
ζ (t) in the photonic structure of Fig. 3, the left-boundary
waveguide n = 1 should be excited at the input plane t = 0
by a light beam, e.g., using butt coupling by an optical fiber.
The correlation RH function ζ (t) is then simply retrieved by
monitoring the amplitude c1(t) of light that remains trapped
in the n = 1 waveguide of the lattice along the propagation
distance t . It is worth noting that, with waveguide arrays
manufactured by the femtosecond laser-writing technology
[29], a careful control of hopping rates and waveguide bending
is nowadays possible. For example, tridiagonal Hamiltonian
matrices with inhomogeneous hopping rates with N up to a
few tens have been recently demonstrated in femtosecond laser
written waveguide chains [30]. Hence the waveguide design
suggested in Fig. 3 is expected to be feasible with current
waveguide fabrication technologies.
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V. CONCLUSIONS AND DISCUSSION

In this paper we have proposed an experimentally feasible
method to simulate the Riemann-Hurwitz ζ function by
the autocorrelation function of a finite-dimensional quantum
system initially prepared in a bare state. The proposal is based
on an engineered one-dimensional tight-binding Hamiltonian,
with specific conditions for the eigenvalues and eigenvectors,
which can be implemented by, e.g., trapped-ion systems or
evanescently coupled optical waveguide arrays. Compared to
the recent proposal of Ref. [16] and based on the realization
of an anharmonic quantum oscillator, our quantum analog
simulator uses a more feasible tight-binding Hamiltonian and
enables a very simple preparation of the system in a thermal
(Riemannian) phase state. Like the proposal of Ref. [16],
our analog simulator uses the Dirichlet representation of
the RH ζ function, and so it is regrettably not suited to
simulate the more interesting behavior of the function along
the critical line 1/2 + it , where the nontrivial zeros of the
Riemann function are located. A desirable extension of our
results would be to synthesize a tight-binding Hamiltonian,
which can simulate the behavior of the Riemann function
along such a line. The starting point of such a goal could be
provided by the Riemann-Siegel formula [2], which gives an
approximation of the ζ function by a sum of two finite Dirichlet
series which are valid along the critical line. It is envisaged
two such finite sums could be implemented by means of a
finite-dimensional block-diagonal Hamiltonian, where each
block simulates independently each of the two series in
the Riemann-Siegel formula. In this proposal, however, the
measurement of the autocorrelation function might be a more
challenging task, and further investigation is required.

On a practical level, it should be mentioned that our
proposal suffers from some limitations, which are similar to
those discussed for other systems (see, e.g., Ref. [16]). The first
issue is related to the truncation of the Dirichlet series, which
makes our approach unsuited to simulate the RH ζ function
near the line σ = 1, where the convergence of the Dirichlet
series becomes very slow and thus extremely large values of
N would be required. In principle, the algorithm presented in
Sec. II works well for small as well as large values of N (e.g.,
N up to 1000); however in any physical implementation N

is limited to a relatively small value because of technological
issues. For example, in the photonic realization discussed in
Sec. IV an upper limit to N can be roughly estimated to be a
few tens (e.g., N = 50). As N is increased, tolerances in the
values of Jn and Bn that ensure the logarithmic spectrum (1)
of eigenvalues become more stringent and unrealistic. The
limited number of N available in any realistic implementation
of H poses a restriction on the domain of the RH ζ function that
we can access in an experiment owing to the slow convergence
of the series (6) as σ → 1+. For a given value of σ , the

error introduced by truncation of the series (6) remains at
an acceptable small level provided that N is larger than a
minimum value Nmin, which rapidly increases as σ → 1+.
To estimate Nmin, let us consider as an example the Riemann
function, i.e., the case a = 1, and let us consider the asymptotic
behavior of the error,

ε = ζ (s,1) −
N−1∑
n=0

1

(n + 1)s
=

∞∑
n=N

1

(n + 1)s
, (21)

as Re(s) = σ → 1+. The asymptotic form of ε for the
Riemann function is given by Theorem 4.11 in Titchmarsh
[31]. If we consider, for the sake of clearness, the t = 0 case,
one has [31]

ε(N,σ ) = − N1−σ

1 − σ
+ O

(
1

N

σ)
. (22)

Note that, as σ → 1+, the first term on the right-hand side of
Eq. (22) becomes singular, and to keep the error small one
should take N large enough to counteract the singular term.
For a given value of σ close to (but larger than) 1, an estimate
of the truncation index N that ensures a small error |ε| � 1 is
readily obtained from Eq. (22) and reads N 	 Nmin(σ ), where

Nmin(σ ) = (σ − 1)−
1

σ−1 . (23)

The behavior of Nmin versus σ shows a steep increase below
σ ∼ 1.3. For example, one has Nmin � 4,55,3125 for σ =
1.5,1.3,1.2, respectively. This shows that an accurate estimate
of the Riemann function can be realized in practice for σ

larger than σmin � 1.3 and that for σ > 1.5 the estimation is
very accurate even for few lattice sites N . Another limitation
of our proposed scheme in the estimation of the RH correlation
function is decoherence. Obviously, our analysis assumes
that the quantum evolution of the system is coherent; i.e.,
we neglected interaction with the environment. This requires
that the observation time t is smaller than the coherence
time tcoh. This limitation will depend on the specific physical
implementation of the quantum simulator. In trapped ions
coherence time varies in the range of milliseconds to minutes,
depending on the qubit realization and the ions in use. On
the other hand, in the case of the optical-waveguide realization
decoherence is irrelevant and can be ignored [32], although the
maximum value of t is still limited by the sample length. The
two limitations for parameters t and σ discussed above, arising
from decoherence and from series truncation, are illustrated in
Fig. 1.
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